Search results for "Concrete beam"
showing 10 items of 41 documents
Validation of a Shear Model for RC and Hybrid Beams with Two Different Inclinations of Transversal Reinforcement
2016
The validation of an analytical model recently proposed for evaluation of the shear capacity in Reinforced Concrete (RC) beams containing multiple inclination of transverse stirrups is presented. The model is a suitable extension of that currently proposed in Eurocode 2 for the evaluation of the shear resistance, and it is derived by means of the the variable-inclination stress-field theory based on Nielsen’s plastic approach. Experimental and numerical data available in the literature on Hybrid Steel-Trussed Concrete Beams (HSTCBs) are used for model validation and result discussion. Finally, also the comparison with a different analytical approach for the assessment of the shear resistanc…
Shear-flexure interaction of RC elements strengthened with FRP sheets
2005
An approximate physical model for evaluation of the M-V interaction resistance domains for concrete elements strengthened with FRP sheets is presented. The reliability of the model in predicting flexureshear capacity is verified by a comparison with the results of several experimental tests.
Numerical prediction of the shear response of semi-prefabricated steel-concrete trussed beams
2016
Abstract In this study, the shear behavior of hybrid steel-trussed-concrete beams (HSTCBs) realized with prefabricated steel trusses embedded into a concrete core cast in situ, is investigated by means of Finite Element (FE) numerical simulations. HSTCBs do not behave as classical RC elements nor composite beams. Up to now, there are not specific design criteria in the building codes and the calculation of this type of beams is conducted by means of design-by-testing procedures. The knowledge of the material behavior as well as the understanding of the interaction between materials in contact is the first requirement for the definition of proper design procedures and calculation methods for…
Innovative connections for steel-concrete-trussed beams: a patented solution
2023
The most recent design strategies welcome the adoption of innovative techniques for seismic energy input mitigation, aiming to achieve high dissipation capacity, prevent the structure from collapse and ensure the serviceability of the construction. Friction damper devices have been widely adopted in framed steel structures for decades, while their introduction in different structural types is still under investigation. This paper presents the outcomes of innovative research supported by the industry and conducted on beam-to-column connections of RC structures in which the beams are Hybrid Steel-Trussed Concrete Beams (HSTCBs) and the columns are classical RC pillars. An innovative solution,…
Computational Study of Failure of Hybrid Steel Trussed Concrete Beams
2017
This study investigates the failure behavior of hybrid steel trussed concrete beams (HSTCBs) under three-point bending through a series of finite-element (FE) simulations. The FE model employs well-established constitutive relations of concrete and steel with a simplified contact condition between the concrete and steel truss. The numerical model is compared with existing experimental data as well as a FE model that uses a more sophisticated concrete-steel interfacial model. The comparison shows that the present model is able to capture various failure mechanisms of the beam and its peak load capacity. The model is applied to investigate the behavior of a set of HSTCBs of different sizes, w…
Seismic behaviour of hybrid steel trussed concrete beams
2010
Flexural and Shear Resistance of Steel Fiber–Reinforced Lightweight Concrete Beams
2014
In the present paper an analytical model is proposed that is able to determine the shear resistance of lightweight reinforced concrete beams with longitudinal bars, in the presence of reinforcing steel fibers. The model is based on the evaluation of the resistance contribution resulting from beam and arch actions. For the resistance contribution of main bars in tension, the residual bond adherence of steel bars and the crack spacing of reinforced concrete (RC) beams in the presence of fibers are considered. The contribution in terms of postcracking resistance in the tension zone of the beams is also included. The model was verified on the basis of experimental data available in the literatu…
FEM analysis of push-out test response of Hybrid Steel Trussed Concrete Beams (HSTCBs)
2015
Abstract Aiming to investigate the steel truss–concrete stress transfer mechanism in Hybrid Steel Trussed–Concrete Beams (HSTCBs), a three-dimensional (3D) nonlinear Finite Element (FE) model is developed. The constitutive relationship of the steel composing the plates and the rebars is modeled by means of a quadri-linear law, while the concrete behavior is defined by means of a Concrete Damaged Plasticity (CDP) model, suitable for modeling concrete and brittle materials. Two main failure mechanisms are considered, namely the tensile cracking and the compressive crushing. In order to accurately grasp the complicate dowel and bond phenomena arising at the steel–concrete interface, a 3D solid…
Experimental characterization of friction properties of materials for innovative beam-to-column dissipative connection for low-damage RC structures
2023
Low-damage design of structures in seismic-prone areas is becoming an efficient strategy to obtain "earthquake-proof" buildings, i.e. buildings that, even in the case of severe seismic actions, experience a low or negligible amount of damage. Besides the safeguard of human lives, this design strategy aims also to limit the downtime of buildings, which represents a significant source of economic loss, and to ensure an immediate occupancy in the aftermath of an earthquake. In this context, focusing on moment-resisting frames (MRFs), several solutions have been developed for the beam-to-column connections (BCCs) of steel and precast/prestressed concrete structures, but very few for cast-in-sit…
Dissipative connections of rc frames with prefabricated steel-trussed-concrete beams
2020
In the last thirty years, Hybrid Steel-Trussed Concrete Beams (HSTCBs) have been widely used in civil and industrial constructions and, therefore, their mechanical performance must be evaluated with the aim of guaranteeing adequate dissipation of the seismic energy particularly in the beam-to-column joints. However, one of the most frequent peculiarities of HSTCBs is that of using their own steel joist to cover large spans with reduced depth and, in the case of traditional beam-to-column connections, this requires large amount of steel reinforcement inside the panel zone, often made with large diameter rebars. These characteristics make both the panel zone and the beam end potentially vulne…